Forensic Science 1   (#2002480)

Version for Academic Year:

Course Standards

General Course Information and Notes

General Notes

Laboratory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Special Notes:

Instructional Practices

Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:

  1. Ensuring wide reading from complex text that varies in length.
  2. Making close reading and rereading of texts central to lessons.
  3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
  4. Emphasizing students supporting answers based upon evidence from the text.
  5. Providing extensive research and writing opportunities (claims and evidence).

Literacy Standards in Science
Secondary science courses include reading standards for literacy in science and technical subjects 6-12 and writing standards for literacy in history/social studies, science, and technical subjects 6-12. The courses also include speaking and listening standards. For a complete list of standards required for this course click on the blue tile labeled course standards. You may also download the complete course including all required standards and notes sections using the export function located at the top of this page.

English Language Development ELD Standards Special Notes Section:
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: https://cpalmsmediaprod.blob.core.windows.net/uploads/docs/standards/eld/sc.pdf

Additional Instructional Resources:
A.V.E. for Success Collection is provided by the Florida Association of School Administrators: http://www.fasa.net/4DCGI/cms/review.html?Action=CMS_Document&DocID=139. Please be aware that these resources have not been reviewed by CPALMS and there may be a charge for the use of some of them in this collection.

General Information

Course Number: 2002480
Course Path:
Abbreviated Title: FOR SCI 1
Course Length: Year (Y)
Course Type: Elective Course
Course Level: 2
Course Status: Course Approved
Grade Level(s): 9,10,11,12

Student Resources

Vetted resources students can use to learn the concepts and skills in this course.

Original Student Tutorials

Matter, Matters Part 2: Physical and Chemical Changes:

Explore, identify, and describe chemical and physical changes in matter with this interactive tutorial. 

This is part 2 of 2-part series, click HERE to view part 1.

Type: Original Student Tutorial

Matter, Matters Part 1: Properties of Matter:

Explore and define matter, properties of matter, and the difference between physical and chemical properties in this interactive tutorial.

This is part 1 of 2-part series, click HERE to view part 2.

Type: Original Student Tutorial

Discovering Newton's Third Law of Motion: On the Basketball Court:

Learn about Newton's third law of motion on the basketball court in this interactive tutorial.

This is part 3 in a 4-part series. Click below to explore the other tutorials in the series. 

Type: Original Student Tutorial

Discovering Newton's Second Law of Motion: On the Softball Diamond:

Learn about Newton's second law of motion on the softball diamond with this interactive tutorial.

This is part 2 in a 4-part series. Click below to explore the other tutorials in the series.

Type: Original Student Tutorial

Discovering Newton's First Law of Motion: On the Soccer Pitch:

Take to the soccer pitch to learn about Newton's first law of motion in this interactive tutorial.

This part 1 in a 4-part series. Click below to explore the other tutorials in the series.
Part 2: Discovering Newton’s Second Law of Motion: On the Softball Diamond (Coming soon)
Part 3: Discovering Newton’s Third Law of Motion: On the Basketball Court (Coming soon)
Part 4: Newton’s Insight: Standing on the Shoulders of Giants (Coming soon)

Type: Original Student Tutorial

Turtles and Towns:

Explore the impacts on sea turtles, humans, and the economy when we live, work, and play at the beach with this interactive tutorial.

Type: Original Student Tutorial

How Viral Disease Spreads:

Learn how scientists measure viral spread and use this information to make recommendations for the public in this interactive tutorial.

Type: Original Student Tutorial

Evaluating Sources of Information:

Learn how to identify different sources of scientific claims and to evaluate their reliability in this interactive tutorial.

Type: Original Student Tutorial

Testing Scientific Claims:

Learn how to test scientific claims and judge competing hypotheses by understanding how they can be tested against one another in this interactive tutorial.

Type: Original Student Tutorial

Genes and Health:

Genetic mutations can cause illness. Learn how genetic diseases can affect you and your communities in this interactive tutorial.

Type: Original Student Tutorial

Genes and Environment:

Learn how the expression of genes is affected our environment, including lifestyle choices. In this interactive tutorial, you'll also explore how a combination of genes and environmental factors can impact the risk of multifactorial disease.

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 4 of 4):

Practice writing different aspects of an expository essay about scientists using drones to research glaciers in Peru. This interactive tutorial is part four of a four-part series. In this final tutorial, you will learn about the elements of a body paragraph. You will also create a body paragraph with supporting evidence. Finally, you will learn about the elements of a conclusion and practice creating a “gift.” 

This tutorial is part four of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Expository Writing: Eyes in the Sky (Part 3 of 4):

Learn how to write an introduction for an expository essay in this interactive tutorial. This tutorial is the third part of a four-part series. In previous tutorials in this series, students analyzed an informational text and video about scientists using drones to explore glaciers in Peru. Students also determined the central idea and important details of the text and wrote an effective summary. In part three, you'll learn how to write an introduction for an expository essay about the scientists' research. 

This tutorial is part three of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 2 of 4):

Learn how to identify the central idea and important details of a text, as well as how to write an effective summary in this interactive tutorial. This tutorial is the second tutorial in a four-part series that examines how scientists are using drones to explore glaciers in Peru. 

This tutorial is part two of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Drones and Glaciers: Eyes in the Sky (Part 1 of 4):

Learn about how researchers are using drones, also called unmanned aerial vehicles or UAVs, to study glaciers in Peru. In this interactive tutorial, you will practice citing text evidence when answering questions about a text.

This tutorial is part one of a four-part series. Click below to open the other tutorials in this series.

Type: Original Student Tutorial

Pathogens and Disease:

Pathogens of all sorts can make us sick. Learn the whats, whys, and hows of the process in this interactive tutorial.

Type: Original Student Tutorial

Hallowed Words: Evaluating a Speaker's Effectiveness:

Learn how to evaluate a speaker's point of view, reasoning, and use of evidence. In this interactive tutorial, you'll examine Abraham Lincoln's "Gettysburg Address" and evaluate the effectiveness of his words by analyzing his use of reasoning and evidence. 

Type: Original Student Tutorial

Assessment of Genetic Biodiversity through Biotechnology:

Examine how genetic identification is aiding marine biologists studying organisms in deep ocean regions. This interactive tutorial also features a CPALMS Perspectives video.

Type: Original Student Tutorial

The Macromolecules of Life: Carbohydrates:

Learn about the basic molecular structures and primary functions of carbohydrates with this interactive tutorial.

This is part 2 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Challenges to Public Health :

Learn to distinguish between public health issues and individual health issues in this interactive tutorial. 

This is part 1 of 4 in a series of tutorials addressing this standard.

Type: Original Student Tutorial

Microscope Mathematics:

Learn how you can use a microscope as a tool to measure objects in this interactive tutorial.

Type: Original Student Tutorial

Ecological Data Analysis:

See how data are interpreted to better understand the reproductive strategies taken by sea anemones with this interactive tutorial.

Type: Original Student Tutorial

Ecology Sampling Strategies:

Examine field sampling strategies used to gather data and avoid bias in ecology research. This interactive tutorial features the CPALMS Perspectives video .

Type: Original Student Tutorial

The Macromolecules of Life: Lipids:

Learn about the basic molecular structures and primary functions of lipids with this interactive tutorial.

This is part 3 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

The Mystery of Muscle Cell Metabolism:

Explore the mystery of muscle cell metabolism and how cells are able to meet the need for a constant supply of energy. In this interactive tutorial, you'll identify the basic structure of adenosine triphosphate (ATP), explain how ATP’s structure is related it its job in the cell, and connect this role to energy transfers in living things.

Type: Original Student Tutorial

Cells, Cells Everywhere!:

Learn how to identify explicit evidence and understand implicit meaning in the basic principles of the cell theory. The cell theory states that all organisms are made of cells. These cells are the smallest and basic unit of life. And finally, cells can only come from other cells.

Type: Original Student Tutorial

Comparing Mitosis and Meiosis:

Compare and contrast mitosis and meiosis in this interactive tutorial. You'll also relate them to the processes of sexual and asexual reproduction and their consequences for genetic variation.

Type: Original Student Tutorial

The Macromolecules of Life: Proteins:

Learn about the basic molecular structures and primary functions of proteins with this interactive tutorial.

This is part 4 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Earliest Beginnings:

Learn how to identify and describe the leading scientific explanations of the origin of life on Earth.

Type: Original Student Tutorial

Graphing Quadratic Functions:

Follow as we discover key features of a quadratic equation written in vertex form in this interactive tutorial.

Type: Original Student Tutorial

Cellular Transport: The Role of the Cell Membrane:

Learn about the function of the cell membrane as a selective barrier that moves material into and out of the cell to maintain homeostasis with this interactive tutorial.

Type: Original Student Tutorial

The Macromolecules of Life: Nucleic Acids:

Learn to identify and describe the structural and functional features of nucleic acids, one of the 4 primary macromolecule groups in biological systems, with this interactive tutorial.

This is Part 3 in 5-part series. Click below to open the other tutorials in the series:

Type: Original Student Tutorial

Observation vs. Inference:

Learn how to identify explicit evidence and understand implicit meaning in a text and demonstrate how and why scientific inferences are drawn from scientific observation and be able to identify examples in biology.

Type: Original Student Tutorial

Cool Case Files:

Learn that a scientific theory is the culmination of many experiments and supplies the most powerful explanation that scientists have to offer with this interactive tutorial.

Type: Original Student Tutorial

Types of Microscopes:

Learn how to determine differences and similarities of the structure and function of compound light microscopes, dissecting microscopes, scanning electron microscopes and transmitting electron microscopes.

Type: Original Student Tutorial

Defining Science:

Learn how to define what science is and what it is not. In this interactive tutorial, you will identify why certain ways of exploring the universe can and cannot be considered scientific practices.

Type: Original Student Tutorial

The Macromolecules of Life: Overview:

Learn to identify the four basic biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids) by structure and function with this interactive tutorial.

This is part 1 in a five-part series. Click below to explore other tutorials in the series.

Type: Original Student Tutorial

Complex Modes of Inheritance:

Learn the basics of inheritance in this interactive tutorial. You discover how to differentiate between polygenic and multiple alleles, predict genetic outcomes using a Punnett square, and analyze inheritance patterns caused by various modes of inheritances including codominant, incomplete dominance, sex-linked, polygenic, and multiple alleles. 

Type: Original Student Tutorial

Diving the Depths of Underwater Life:

Learn how the distribution of aquatic life forms is affected by light, temperature, and salinity with this interactive tutorial.

Type: Original Student Tutorial

The Universal Genetic Code:

Learn how to better understand the composition of DNA, the purpose of the information in DNA, why the DNA sequence is considered a universal code, and what might happen if mistakes appear in the code with this interactive tutorial.

Type: Original Student Tutorial

Impact of Biotechnology:

Learn how to identify and define types of biotechnology and consider the impacts of biotechnologies on the individual, society and the environment in this interactive tutorial.

Type: Original Student Tutorial

Chemistry With a Conscience:

Explore green chemistry and what it means to be benign by design in this interactive tutorial.

Type: Original Student Tutorial

Educational Game

Stop Disasters Before They Happen:

Students attempt to save towns from damage prior to the arrival of several different natural disasters. Students will learn the importance of early prevention and actions to protect others, themselves and their property when faced with a natural disaster. Certain disasters are more appropriate for particular grade levels. Each scenario takes between 20 and 45 minutes to play, depending on the disaster for which your students are trying to prepare. There are five scenarios available, hurricane, tsunami, flood, earthquake, and wildfire. Each scenario can be played on easy, medium or hard difficulty levels. As with life, there are no "perfect solutions" to each scenario and no "perfect score", so students can play multiple times and the scenarios will still be slightly different.These simulation are part of a larger website that provides multiple links for natural disasters.

Type: Educational Game

Lesson Plans

Elasticity: Studying How Solids Change Shape and Size:

This lesson's primary focus is to introduce high school students to the concept of Elasticity, which is one of the fundamental concepts in the understanding of the physics of deformation in solids. The main learning objectives are: (1) To understand the essential concept of Elasticity and be able to distinguish simple solids objects based on degree and extent of their elastic properties; (2) To appreciate the utility of the elastic force vs. deformation curve through experiments; (3) To be aware of potential sources of error present in such experiments and identify corrective measures; and (4) To appreciate the relevance of Elasticity in practical applications.

Type: Lesson Plan

CO2: Find Out What It Means to You:

This BLOSSOMS lesson discusses Carbon Dioxide, and its impact on climate change. The main learning objective is for students to become more familiar with human production of Carbon Dioxide gas, as well as to gain an awareness of the potential for this gas to effect the temperature of Earth’s atmosphere. This lesson should take about an hour to complete. In order to complete the lesson, the teacher will need: printed copies of signs representing the different products and processes that take place in the carbon cycle (included), samples of matter that represent those products, handouts for the students to create a graphic of the carbon cycle (included) and graph paper or graphing software for students to create graphs. In the breaks of this BLOSSOMS lesson, students will be creating models of the carbon cycle as well as observing experiments and analyzing data from them. It is hoped that this lesson will familiarize students with ways in which carbon moves through our environment and provide them with some personal connection to the impact that an increased concentration of CO2 can have on air temperature. The goal is to spark their interest and hopefully to encourage them to ask and investigate more questions about the climate. 

Type: Lesson Plan

Using DNA to Identify People:

 Learning objectives:  Students will learn what DNA fingerprinting is, what it is used for, and how it is used in paternity testing and forensics.  Students will see how this technique actually works in lab.  Students will learn how to analyze the gels used in this technique to match babies to parents, and crime scene evidence to suspects.

Type: Lesson Plan

Hanging by a Thread:

This lesson focuses on two elements: understanding Newton’s laws of motion, and how to use Newton’s laws to create force diagrams. This lesson also demonstrates how to incorporate requirements of the Next Generation Science Standards (NGSS) into a physics lesson. It uses a discrepant event (phenomenon) to model forces at work on an object resulting in motion. 

Type: Lesson Plan

An Introduction to the Physics of Sailing:

The goal of this lesson is to explain how sailboats work by exploring basic physics principles. At the end of this lesson, students will be able to identify the forces acting on a sailboat and explain how the combination of these forces results in the forward motion of a sailboat. Students should be familiar with vectors and be able to use them to represent forces and moments, and also should be familiar with using free body diagrams to represent forces and moments. The classroom activity challenges are centered around small-group discussions based on the questions posed before each break. Free body diagrams, or another conceptual representation of his or her answer, should support each student’s solution to the questions posed in the video.

Type: Lesson Plan

Perspectives Video: Experts

Jumping Robots and Quadratics:

Jump to it and learn more about how quadratic equations are used in robot navigation problem solving!

Type: Perspectives Video: Expert

Mathematically Exploring the Wakulla Caves:

The tide is high! How can we statistically prove there is a relationship between the tides on the Gulf Coast and in a fresh water spring 20 miles from each other?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Biochemistry and Medicine:

Advances in "big data" are leading to rapid developments in personalized medicine. Learn more!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

pH Scale:

Keep an eye on pH as you learn about what makes acids and bases.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Everglades Invertebrate Biodiversity:

Pick up the pace and learn how snails fit into the Florida food web!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Mutations and Genetic Diversity:

Mutations don't just happen to comic book heroes and villains. Learn more about this natural biological phenomenon!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Observing Invertebrate Biodiversity with Live Rock:

This teaching activity rocks! Learn about aquatic ecosystems and hands-on learning!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

The Role of Mangroves in Coastal Ecosystems:

What lurks beneath the water's surface? Lots of creatures, big and small! Learn how mangroves grow in an unusual environment and support many other organisms both in and out of the water.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Protein Factories:

What's in a molecular biologist's toolbox? Very small tools for working with cellular machines and molecules!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Physical and Chemical Changes in Food :

Don't overreact when this chemist describes physical and chemical changes that you can observe in your own kitchen!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Light Spectrum for Growing Plants:

Plants need visible light, just not all of it. Learn how space plants and their lights strive for efficiency.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Oil Fingerprinting:

Humans aren't the only ones who get their fingerprints taken. Learn how this scientist is like a crime scene investigator using oil "fingerprints" to explain the orgins of spilled oil.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Observable Inheritance Patterns:

A plant geneticist describes observable inheritance patterns and genetic mutations in maize.

Type: Perspectives Video: Expert

Viticulture and Biotechnology:

A viticulture scientist explains grape expectations for medicine and society.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Expert

Perspectives Video: Professional/Enthusiasts

Ethanol Fuel:

Why can't you put Ethanol fuel in a boat motor?

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Boat Propellers:

We'll be looking at the role of pitch, number of blades and material for outboard motor props as it relates to the propulsion of a boat

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Unit Conversions:

Get fired up as you learn more about ceramic glaze recipes and mathematical units.

Type: Perspectives Video: Professional/Enthusiast

Shape Affects Sound:

Learn how the shape of a didgeridoo affects its sound in this totally tubular video.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Wind Vector Arithmetic for Making a Flight Plan:

Math is important to help you get where you want to go in life, especially if you plan to fly there!

Type: Perspectives Video: Professional/Enthusiast

Seeing into Atoms with Electromagnetic Energy:

If you want to understand the atom, you'll need a lot of energy. Learn how physicists use high energy light and electrons to study atomic structure.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Using Infrared Light to Analyze Materials:

One way to figure out what something is made of is to see what kinds of wavelengths of electromagnetic energy it can absorb.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Wave Frequency and Audio Engineering:

Want to watch a video on audio engineering and frequency? Sounds good to me.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

See the Four States of Matter in Welding!:

A welder wields a plasma torch to cut solid metal like a hot knife through butter. It's one-stop shopping to see all four states of matter.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Using X-rays in Archeology:

An archaeologist explains how he is using x-rays to reconstruct a nineteenth-century battle!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Bring Frequencies to Life with Balinese Music:

It's okay if you're not on quite the same wavelength as this ethnomusicologist. In Balinese gamelan tuning, that's a good thing!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Plan Your Archaeological Excavations with Radar Waves! :

Archaeologists can see underground trends before everyone else with ground penetrating radar (GPR).

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Vectors and Flight Forces:

When you watch this video, your knowledge related to flight and physics will really take off!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Physics of Bass Guitar:

If physics has you down, don't fret - this musician covers all the bases.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Frequencies and Communities in the Music of Bali:

Physical science and social science connect in this discussion of Balinese gamelan. Full STEAM ahead!

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Using the Electromagnetic Spectrum to Detect Hydrogen Fires:

Learn more about how splitting light beams helps researchers detect hydrogen fires for the space program.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Optical Spectroscopy: Using Electromagnetic Waves to Detect Fires:

Hydrogen is used to launch spacecraft, but accidental fires are difficult to see. Learn about the physics of these fires and how we detect them.

Type: Perspectives Video: Professional/Enthusiast

Managing Waste Disposal with Landfills and Recycling:

Landfills have a come a long way! Explore modern techniques for managing our environmental impact through responsible waste disposal.

Download the CPALMS Perspectives video student note taking guide.

Type: Perspectives Video: Professional/Enthusiast

Presentation/Slideshows

What Killed the Dinosaurs?:

It is often difficult, sometimes impossible, to get a definitive answer to some of life's most enduring questions. Scientific processes provide alternative explanations for a wide variety of phenomena by piecing together all the available information. This interactive activity on the Evolution website explores four possible hypotheses to explain what caused the extinction of the dinosaurs 65 million years ago, inviting the viewer to consider the evidence and come to their own decision.

Type: Presentation/Slideshow

Introduction to Infectious Diseases:

A PowerPoint with speaker notes covering infectious diseases, causes, transmission, and control.

Type: Presentation/Slideshow

Problem-Solving Tasks

Finding Parabolas through Two Points:

This problem-solving task challenges students to find all quadratic functions described by given equation and coordinates, and describe how the graphs of those functions are related to one another.

Type: Problem-Solving Task

Weed Killer:

The principal purpose of the task is to explore a real-world application problem with algebra, working with units and maintaining reasonable levels of accuracy throughout. Students are asked to determine which product will be the most economical to meet the requirements given in the problem.

Type: Problem-Solving Task

Dinosaur Bones:

The purpose of this task is to illustrate through an absurd example the fact that in real life quantities are reported to a certain level of accuracy, and it does not make sense to treat them as having greater accuracy.

Type: Problem-Solving Task

Bus and Car:

This task operates at two levels. In part it is a simple exploration of the relationship between speed, distance, and time. Part (c) requires understanding of the idea of average speed, and gives an opportunity to address the common confusion between average speed and the average of the speeds for the two segments of the trip.

At a higher level, the task addresses MAFS.912.N-Q.1.3, since realistically neither the car nor the bus is going to travel at exactly the same speed from beginning to end of each segment; there is time traveling through traffic in cities, and even on the autobahn the speed is not constant. Thus students must make judgments about the level of accuracy with which to report the result.

Type: Problem-Solving Task

Accuracy of Carbon 14 Dating I:

This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.

Type: Problem-Solving Task

Accuracy of Carbon 14 Dating II:

This task examines, from a mathematical and statistical point of view, how scientists measure the age of organic materials by measuring the ratio of Carbon 14 to Carbon 12. The focus here is on the statistical nature of such dating.

Type: Problem-Solving Task

Fuel Efficiency:

The problem requires students to not only convert miles to kilometers and gallons to liters but they also have to deal with the added complication of finding the reciprocal at some point.

Type: Problem-Solving Task

How Much Is a Penny Worth?:

This task asks students to calculate the cost of materials to make a penny, utilizing rates of grams of copper.

Type: Problem-Solving Task

Runner's World:

Students are asked to use units to determine if the given statement is valid.

Type: Problem-Solving Task

Harvesting the Fields:

This is a challenging task, suitable for extended work, and reaching into a deep understanding of units. Students are given a scenario and asked to determine the number of people required to complete the amount of work in the time described. The task requires students to exhibit , Make sense of problems and persevere in solving them. An algebraic solution is possible but complicated; a numerical solution is both simpler and more sophisticated, requiring skilled use of units and quantitative reasoning. Thus the task aligns with either MAFS.912.A-CED.1.1 or MAFS.912.N-Q.1.1, depending on the approach.

Type: Problem-Solving Task

Graphs of Quadratic Functions:

Students compare graphs of different quadratic functions, then produce equations of their own to satisfy given conditions.

This exploration can be done in class near the beginning of a unit on graphing parabolas. Students need to be familiar with intercepts, and need to know what the vertex is. It is effective after students have graphed parabolas in vertex form (y=a(x–h)2+k), but have not yet explored graphing other forms.

Type: Problem-Solving Task

Traffic Jam:

This resource poses the question, "how many vehicles might be involved in a traffic jam 12 miles long?"

This task, while involving relatively simple arithmetic, promps students to practice modeling (MP4), work with units and conversion (N-Q.1), and develop a new unit (N-Q.2). Students will also consider the appropriate level of accuracy to use in their conclusions (N-Q.3).

Type: Problem-Solving Task

Selling Fuel Oil at a Loss:

The task is a modeling problem which ties in to financial decisions faced routinely by businesses, namely the balance between maintaining inventory and raising short-term capital for investment or re-investment in developing the business.

Type: Problem-Solving Task

Felicia's Drive:

This task provides students the opportunity to make use of units to find the gas needed (). It also requires them to make some sensible approximations (e.g., 2.92 gallons is not a good answer to part (a)) and to recognize that Felicia's situation requires her to round up. Various answers to (a) are possible, depending on how much students think is a safe amount for Felicia to have left in the tank when she arrives at the gas station. The key point is for them to explain their choices. This task provides an opportunity for students to practice MAFS.K12.MP.2.1: Reason abstractly and quantitatively, and MAFS.K12.MP.3.1: Construct viable arguments and critique the reasoning of others.

Type: Problem-Solving Task

Graphs of Power Functions:

This task requires students to recognize the graphs of different (positive) powers of x.

Type: Problem-Solving Task

Calories in a Sports Drink:

This problem involves the meaning of numbers found on labels. When the level of accuracy is not given we need to make assumptions based on how the information is reported. An unexpected surprise awaits in this case, however, as no reasonable interpretation of the level of accuracy makes sense of the information reported on the bottles in parts (b) and (c). Either a miscalculation has been made or the numbers have been rounded in a very odd way.

Type: Problem-Solving Task

Student Center Activity

Dihybrid Cross Problem Set:

In this problem set, multiple choice problems are displayed one at a time. If students answer correctly, they are shown a short explanation. If their answer is incorrect, a tutorial will follow, and the students will be given another chance to answer.

Type: Student Center Activity

Text Resources

Know Your Genes:

This website is a good resource for reviewing the basics of the study of genetics. It conveniently lists and describes common genetic disorders, and describes procedure for setting up a medical family tree.

Type: Text Resource

Beginner's Guide to Aerodynamics:

NASA's "Beginner's Guide to Aerodynamics" provides some general information on the basics of aerodynamics. The site allows users to explore at their own pace and level of interest. The topics available include equations of motion, free falling, air resistance, force, gas properties, and atmosphere. Movies, reading materials, and activities are all available to accommodate a variety of different learning styles.

Type: Text Resource

Tutorials

Graphs and Solutions of Functions in Quadratic Equations:

You will learn how the parent function for a quadratic function is affected when f(x) = x2.

Type: Tutorial

Graphing Quadractic Functions in Vertex Form:

This tutorial will help the students to identify the vertex of a parabola from the equation, and then graph the parabola.

Type: Tutorial

Graphing Quadratic Equations:

This tutorial helps the learners to graph the equation of a quadratic function using the coordinates of the vertex of a parabola and its x- intercepts.

Type: Tutorial

Graphing Exponential Equations:

This tutorial will help you to learn about exponential functions by graphing various equations representing exponential growth and decay.

Type: Tutorial

Hypersensitivity Type 2 and Blood Types:


Hypersensitivity refers to excessive, undesirable reactions produced by the normal immune system. Type 2 hypersensitivity is also known as cytotoxic hypersensitivity and may affect a variety of organs and tissues. This animation relates hypersensitivity and blood types together.

Type: Tutorial

Punnet Square Fun:

This Khan Academy video explains and demonstrates how to use Punnett Squares for monohybrid crosses and dihybrid crosses. The video also shows how to use Punnett Squares for inheritance patterns such as codominance, incomplete dominance, and multiple alleles.

Type: Tutorial

Embryonic Stem Cells:

This Khan Academy video describes what happens to a zygote as it becomes an embyro. It further explains what a stem cell is and discusses why there are questions concerning the use of stem cells.

Type: Tutorial

Variation in a Species:

This Khan Academy video explains how variation can be introduced into a species and the importance of sexual reproduction in this process.

Type: Tutorial

DNA:

This Khan Academy video describes the structure of the molecule DNA in great detail. It also discuses the role DNA plays in the process of protein synthesis, explaining transcription and translation. The video discusses the relationship between DNA and chromosomes as well.

Type: Tutorial

Sex-Linked Traits:

This Khan Academy tutorial addresses the differences between the X and Y chromosomes in humans. The SRY gene found on the Y chromosome is discussed and the genes that cause color-blindness and hemophilia on the X chromosome are discussed.

Type: Tutorial

DNA Sequencing Using the Sanger Method:

DNA sequencing is a technique for determining the complete sequence of bases (As, Ts, Gs, and Cs) for a particular piece of DNA. Sequencing is relatively time consuming, as the process must be done to fairly short lengths of DNA at a time. This tutorial will help you to understand the process of DNA sequencing.

Type: Tutorial

Diffusion and Osmosis:

This Khan Academy tutorial guides you through the processes of diffusion and osmosis while explaining the vocabulary and terminology involved in detail.

Type: Tutorial

Bone Growth :

This tutorial will help you to understand how bone growth is different from the growth of many other organs. Although bone may appear to be rigid and lifeless it is actually living tissue that is capable of growth. Unlike soft tissues, bone cannot simply grow by adding additional cells and removing cells that are no longer necessary. The calcium laid down in bone gives the skeleton the strength and rigidity needed to protect and support the body. This rigidity means that expansion requires addition of cells on the outside and, when necessary, the removal of calcium and other materials on the inside.

Type: Tutorial

Introduction to the Cell Membrane:

This Khan Academy tutorial addresses the importance of the phospholipid bilayer in the structure of the cell membrane. The types of molecules that can diffuse through the cell membrane are also discussed.

Type: Tutorial

Proton Pump:

This tutorial will help you to understand how a concentration gradient across a membrane is used. When a molecule or an ion is moved across a membrane from an area of low concentration to an area of high concentration then a gradient is generated. This gradient can be chemical or it can also create a difference in electrical charge across the membrane if ions are involved. The proton pump generates an electrical and chemical gradient that can be used to create ATP which can drive a large number of different biochemical reactions.

Type: Tutorial

Cell Membrane Proteins:

Students will learn about the different types of proteins found in the cell membrane while viewing this Khan Academy tutorial video.

Type: Tutorial

Projectile at an angle:

This video discusses how to figure out the horizontal displacement for a projectile launched at an angle.

Type: Tutorial

Bone Strength:

This tutorial will help you to understand which factors determine the strength of bone. Bone strength is determined by the internal structure, shape, and size of the bone. As we age, bone mass is lost, leading to a common condition called osteoporosis. This tutorial compares normal bone tissue with osteoporotic bone tissue.

Type: Tutorial

Genes Come in Pairs:

This tutorial will help you to understand that genes play an important role in determining physical traits. These traits helps us to identify the homozygous or heterozygous variety of genes. When the pair of genes are homozygous, they are known as pure bred, i.e they have two copies of the same gene for each trait. For heterozygous variety, they have different gene for each trait. Out of this pair, one will be dominant and other will be recessive.

Type: Tutorial

Polymerase Chain Reaction:

This tutorial will help you to understand the procedure of amplifying a single copy of DNA into millions of copies. Polymerase chain reaction is a molecular prototyping technique which helps in copying small segments of DNA into significant amounts required for molecular and genetic analyses.

Type: Tutorial

Regulated Secretion:

This online tutorial will help you to understand the process of regulated secretion. In regulated secretion, proteins are secreted from a cell in large amounts when a specific signal is detected by the cell. The specific example used in this tutorial is the release of insulin after a glucose signal enters a pancreatic beta cell.

Type: Tutorial

Hemoglobin Breakdown:

This tutorial will help you to understand the processing of hemoglobin and why it is different from the processing of many other macromolecules. Hemoglobin contains a heme group which contains iron. Iron is not common in other macromolecules therefore conservation of iron is important and is processed independently.

Type: Tutorial

Ice Accelerating Down an Incline:

This video tutorial from the Khan Academy explains how to calculate the acceleration of ice down a plane made of ice.

Type: Tutorial

Inclined plane force components:

This video tutorial shows how to figure out the components of force due to gravity that are parallel and perpendicular to the surface of an inclined plane.

Type: Tutorial

Virus:


This tutorial will help the student understand about viruses which are small infectious agents that replicate only inside the living cells of other organisms.

Type: Tutorial

Projectile Motion:

This tutorial is about projectile motion. This powerpoint lecture discusses the independence of the vertical and horizontal motion of projectiles. Students will be asked to solve problems involving projectile motion of both projectiles fired horizontally and at an angle. This tutorial is geared for advanced students.

Type: Tutorial

Cells Through Different Microscopes:

This tutorial will help the learner visualize how a cell or single celled organism can differ in its view when looked at under different magnifications and different types of microscopes. This tutorial can be used by the teacher as an added resource for their lesson about different microscopes and how they work..

Type: Tutorial

Polymerase Chain Reaction:

This tutorial introduces the polymerase chain reaction (PCR), which is a technique used in molecular biology to make multiple copies of a gene even when only small amounts of DNA are available.

Type: Tutorial

Not All Scientific Studies are Created Equal:

Every day, we are bombarded by attention grabbing headlines that promise miracle cures to all of our ailments -- often backed up by a "scientific study." But what are these studies, and how do we know if they are reliable? David H. Schwartz dissects two types of studies that scientists use, illuminating why you should always approach the claims with a critical eye.

Type: Tutorial

Cells vs. Virus: A Battle for Health:

All living things are made of cells. In the human body, these highly efficient units are protected by layer upon layer of defense against icky invaders like the cold virus. Shannon Stiles takes a journey into the cell, introducing the microscopic arsenal of weapons and warriors that play a role in the battle for your health.

Type: Tutorial

What Causes Antibiotic Resistance?:

This short video describes the process of antibiotic resistance. Right now, you are inhabited by trillions of micro organisms. Many of these bacteria are harmless (or even helpful!), but there are a few strains of ‘super bacteria' that are pretty nasty -- and they're growing resistant to our antibiotics. Why is this happening? Kevin Wu details the evolution of this problem that presents a big challenge for the future of medicine.

Type: Tutorial

The Chemical Structure of DNA:


This tutorial will help the learners with their understanding of chemical structure of DNA.

Type: Tutorial

Forces:

This tutorial provides the learners with detailed information about forces. Topics covered include Newton's Laws, friction, gravity, balanced and unbalanced forces, vectors, weight, motion and momentum.

Type: Tutorial

Characteristics of Waves:

This tutorial contains information about the characteristics of longitudinal, transverse, and surface waves. This tutorial will also provide information about the amplitude, frequency, wavelength, speed, refraction, reflection, diffraction, and constructive and destructive interference of the waves.

Type: Tutorial

Cell Anatomy:

This tutorial will help the learners to learn about the anatomy of the cell. As the learners move the cursor over each cell organelle, they are shown information about that organelle's structure and function.

Type: Tutorial

Refraction of Light:

This resource explores the electromagnetic spectrum and waves by allowing the learner to observe the refraction of light as it passes from one medium to another, study the relation between refraction of light and the refractive index of the medium, select from a list of materials with different refractive indicecs, and change the light beam from white to monochromatic and observe the difference.

Type: Tutorial

Human Eye Accommodation:

  • Observe how the eye's muscles change the shape of the lens in accordance with the distance to the object being viewed
  • Indicate the parts of the eye that are responsible for vision
  • View how images are formed in the eye

Type: Tutorial

Concave Spherical Mirrors:

  • Learn how a concave spherical mirror generates an image
  • Observe how the size and position of the image changes with the object distance from the mirror
  • Learn the difference between a real image and a virtual image
  • Learn some applications of concave mirrors

Type: Tutorial

Convex Spherical Mirrors:

  • Learn how a convex mirror forms the image of an object
  • Understand why convex mirrors form small virtual images
  • Observe the change in size and position of the image with the change in object's distance from the mirror
  • Learn some practical applications of convex mirrors

Type: Tutorial

Color Temperature in a Virtual Radiator:

  • Observe the change of color of a black body radiator upon changes in temperature
  • Understand that at 0 Kelvin or Absolute Zero there is no molecular motion

Type: Tutorial

Solar Cell Operation:

This resource explains how a solar cell converts light energy into electrical energy. The user will also learn about the different components of the solar cell and observe the relationship between photon intensity and the amount of electrical energy produced.

Type: Tutorial

Electromagnetic Wave Propagation:

  • Observe that light is composed of oscillating electric and magnetic waves
  • Explore the propagation of an electromagnetic wave through its electric and magnetic field vectors
  • Observe the difference in propagation of light of different wavelengths

Type: Tutorial

Basic Electromagnetic Wave Properties:

  • Explore the relationship between wavelength, frequency, amplitude and energy of an electromagnetic wave
  • Compare the characteristics of waves of different wavelengths

Type: Tutorial

Geometrical Construction of Ray Diagrams:

  • Learn to trace the path of propagating light waves using geometrical optics
  • Observe the effect of changing parameters such as focal length, object dimensions and position on image properties
  • Learn the equations used in determining the size and locations of images formed by thin lenses

Type: Tutorial

Video/Audio/Animations

Will an Ice Cube Melt Faster in Freshwater or Saltwater?:

With an often unexpected outcome from a simple experiment, students can discover the factors that cause and influence thermohaline circulation in our oceans. In two 45-minute class periods, students complete activities where they observe the melting of ice cubes in saltwater and freshwater, using basic materials: clear plastic cups, ice cubes, water, salt, food coloring, and thermometers. There are no prerequisites for this lesson but it is helpful if students are familiar with the concepts of density and buoyancy as well as the salinity of seawater. It is also helpful if students understand that dissolving salt in water will lower the freezing point of water. There are additional follow up investigations that help students appreciate and understand the importance of the ocean's influence on Earth's climate.

Type: Video/Audio/Animation

Inquiry and Ocean Exploration:

Ocean explorer Robert Ballard gives a TED Talk relating to the mysteries of the ocean, and the importance of its continued exploration.

Type: Video/Audio/Animation

Photosynthesis:

  • Observe the photosynthesis mechanism in the plant
  • Learn about the main chemical reactions that takes place during photosynthesis
  • Learn how solar energy is converted into chemical energy

Type: Video/Audio/Animation

Lab: Restriction Analysis:

  • An interactive exercise for using agarose gel electrophoresis for separating DNA molecules
  • Explain how restriction endonucleases is used in restriction analysis of DNA

Type: Video/Audio/Animation

Lab: DNA Extraction:

  • Background on the discovery of the DNA double helix
  • Contains an interactive activity for base pairing
  • Contains an interactive activity for DNA extraction

Type: Video/Audio/Animation

Lab: DNA Fingerprint: Alu:

  • Background on tracking human ancestry using the alu marker
  • Animation on polymerase chain reaction, PCR
  • Interactive activity for performing PCR

Type: Video/Audio/Animation

Science Crossword Puzzles:

A collection of crossword puzzles that test the knowledge of students about some of the terms, processes, and classifications covered in science topics

Type: Video/Audio/Animation

Light is a Particle:

This video contains a demo that can be performed to show that light consists of particles
It also uses Lasers with different wavelengths

Type: Video/Audio/Animation

Shapes of Molecules:

  • Differentiate between electron pair and molecular geometry
  • Learn how to name electron pair and molecular geometries for molecules with up to six electron groups around the central atom
  • Illustrate how electron pair repulsion affects bond angles

Type: Video/Audio/Animation

Graphing Lines 1:

Khan Academy video tutorial on graphing linear equations: "Algebra: Graphing Lines 1"

Type: Video/Audio/Animation

Science of the Olympic Winter Games - Aerial Physics:

A 4-minute video in which an Olympic freestyle skier and a physicist discuss the physics behind freestyle skiing.

Type: Video/Audio/Animation

Evolving Ideas: Isn't evolution just a theory?:

This video examines the vocabulary essential for understanding the nature of science and evolution and illustrates how evolution is a powerful, well-supported scientific explanation for the relatedness of all life. A clear definition and description of scientific theory is given.

Type: Video/Audio/Animation

Sex-Linked Traits:

This video describes the chromosomal basis for gender and sex-linked traits.

Type: Video/Audio/Animation

Citizen Science:

In this National Science Foundation video and reading selection lab ecologist Janis Dickinson explains how she depends on citizen scientists to help her track the effects of disease, land-use change and environmental contaminants on the nesting success of birds.

Type: Video/Audio/Animation

Photosynthesis animation and other cell processes in animation:

This site has fantastic short Flash animations of intricate cell processes, including photosynthesis and the electron transport chain.

Type: Video/Audio/Animation

Variation Is Essential: How Does Variation Within a Population Affect the Survival of a Species?:

This is a lesson about phenotypical variation within populations and how these differences are essential for biological evolution. Students will use a model organism (in this case, kidney beans) to explore variation patterns and subsequently connect these differences to artificial & natural selection. The NGSS’ CrossCutting Concepts and Science & Engineering Practices are embedded throughout the lesson.

The main learning objectives are:

  • Using a model (kidney beans) to explore the natural variations within a population.
  • Measuring differences between individuals in a population (population of beans).
  • Describing how genetic/phenotypic variation is a key part of biological evolution because it is a prerequisite for natural selection.
  • Demonstrating in which ways genetic variation is advantageous to a population because it enables some individuals to adapt to the environment while maintaining the survival of the population.

The NGSS Performance Expectations covered are HS-LS4-2. & HS-LS4-4.

Type: Video/Audio/Animation

Virtual Manipulatives

Genetics:

This tutorial explores the work of Gregor Mendel and his foundational genetics experiments with pea plants. It provides practice opportunities to check your understanding of inheritance patterns including single gene recessive traits and sex linked traits. The tutorial also covers more complex patterns of inheritance such those resulting from multiple alleles. Note: This resource is part of a larger collection of information regarding Genetics. Users may view information before and after the specific genetics components highlighted here.

Type: Virtual Manipulative

Newton's three laws of motion:

This website has a short biography about Sir Isaac Newton. It also reviews his three laws of motion with examples, and ends with a short quiz.

Type: Virtual Manipulative

Black body Spectrum:

In this simulation, learn about the black body spectrum of the sun, a light bulb, an oven and the earth. Adjust the temperature to see how the wavelength and intensity of the spectrum are affected.

Type: Virtual Manipulative

Collision lab:

Learn more about collisions with the use of a virtual air hockey table. Investigate simple and complex collisions in one and two dimensions.Experiment with the number of discs, masses and initial conditions. Vary the elasticity and see how the total momentum and kinetic energy changes during collisions.

Some of the sample learning goals can be:

  • Draw "Before and After" pictures of collisions.
  • Construct momentum vector representations of "Before and After" collisions.
  • Apply law of conservation of momentum to solve problems with collisions.
  • Explain why energy is not conserved and varies in some collisions.
  • Determine the change in mechanical energy in collisions of varying "elasticity".
  • What does "elasticity" mean?

Type: Virtual Manipulative

Slope Slider:

In this activity, students adjust slider bars which adjust the coefficients and constants of a linear function and examine how their changes affect the graph. The equation of the line can be in slope-intercept form or standard form. This activity allows students to explore linear equations, slopes, and y-intercepts and their visual representation on a graph. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Graphing Equations Using Intercepts:

This resource provides linear functions in standard form and asks the user to graph it using intercepts on an interactive graph below the problem. Immediate feedback is provided, and for incorrect responses, each step of the solution is thoroughly modeled.

Type: Virtual Manipulative

Split Brain Experiments:

The split brain experiments revealed that the right and the left hemisphere in the brain are good at different things. For instance, the right hemisphere is good at space perception tasks and music while the left is good at verbal and analytic tasks. This game guides students through some examples of the split-brain phenomenon and how the differences are understood.

Type: Virtual Manipulative

The Blood Typing Game:

This educational game is about blood types, blood typing, and blood transfusions. Your challenge is to save patients in urgent need of blood transfusions. Your job is to decide what blood type these patients belong to in order to administer safe blood transfusions. At the end you will be evaluated: if you make no mistakes at all you will get all five blood drops.

Type: Virtual Manipulative

Illustrating the process of diffusion :


This virtual manipulative will help the students to understand that osmosis is the movement of water molecules from an area of high concentration across a semipermeable membrane to an area of low concentration. This illustration of the diffusion process will help the students to understand the concept of osmotic pressure which is created by the movement of the water based on their concentration gradient and thus resulting in the difference of the solute concentration.

Type: Virtual Manipulative

Photoelectric Effect:


This virtual manipulative will help the students to understand how the light shines on a metal surface. Students will recognize a process called as photoelectric effect wherein light can be used to push electrons from the surface of a solid.
Some of the sample learning goals can be:

  • Visualize and describe the photoelectric effect experiment.
  • Predict the results of the experiment, when the intensity of light is changed and its effects on the current and energy of the electrons.
  • Predict the results of the experiment, when the wavelength of the light is changed and its effects on the current and the energy of the electrons.
  • Predict the results of the experiment, when the voltage of the light is changed and its effects on the current and energy of electrons.

Type: Virtual Manipulative

Reactions Rates:

This virtual manipulative will allow you to explore what makes a reaction happen by colliding atoms and molecules. Design your own experiments with different reactions, concentrations, and temperatures. Recognize what affects the rate of a reaction.

Areas to Explore:

  • Explain why and how a pinball shooter can be used to help understand ideas about reactions.
  • Describe on a microscopic level what contributes to a successful reaction.
  • Describe how the reaction coordinate can be used to predict whether a reaction will proceed or slow.
  • Use the potential energy diagram to determine : The activation energy for the forward and reverse reactions; The difference in energy between reactants and products; The relative potential energies of the molecules at different positions on a reaction coordinate.
  • Draw a potential energy diagram from the energies of reactants and products and activation energy.
  • Predict how raising or lowering the temperature will affect a system in the equilibrium.

Type: Virtual Manipulative

The Moving Man:

This virtual manipulative will the students learn about position, velocity and acceleration. Acceleration is the derivative of velocity with respect to time and the velocity is the derivative of position with respect to time. With the elimination of time, the relationship between the acceleration, velocity and position can be represented as x = v2 / 2a. In the stimulation, students will be able to move the man back and forth with the mouse and plot his motion.
Some of the sample learning goals can be:

  • Interpret, predict and draw charts (position, velocity, and acceleration) for common situations.
  • Provide reasoning used to make sense of the charts.

Type: Virtual Manipulative

Graphing Lines:

Allows students access to a Cartesian Coordinate System where linear equations can be graphed and details of the line and the slope can be observed.

Type: Virtual Manipulative

Balancing Chemical Equations:

This activity will allow you to practice balancing a chemical equation. You will have to make sure you are following the law of conservation of mass and recognize what can change to balance an equation.
You can:

  • Balance a chemical equation.
  • Recognize that the number of atoms of each element is conserved in a chemical reaction.
  • Describe the difference between coefficients and subscripts in a chemical equation.
  • Translate from symbolic to molecular representation.

Type: Virtual Manipulative

Acid-Base Solutions:

How do strong and weak acids differ? Use lab tools on your computer to find out! Dip the paper or the probe into solution to measure the pH, or put in the electrodes to measure the conductivity. Then see how concentration and strength affect pH. Can a weak acid solution have the same pH as a strong acid solution.
Some of the topics to investigate:

  • Given acids or bases at the same concentration, demonstrate understanding of acid and base strength by 1. Relating the strength of an acid or base to the extent to which it dissociates in water. 2. Identifying all the molecules and ions that are present in a given acid or base solution. 3. Comparing the relative concentrations of molecules and ions in weak versus strong acid (or base) solutions. 4. Describing the similarities and differences between strong acids and weak acids or strong bases and weak bases.
  • Demonstrate understanding of solution concentrated by: 1. Describing the similarities and differences between concentrated and dilute solutions. 2. Comparing the concentrations of all molecules and ions in concentrated versus dilute solutions of a particular acid or base.
  • Describe how common tools (pH meter, conductivity, pH paper) help identify whether a solution is an acid or base and strong or weak and concentrated or dilute.

Type: Virtual Manipulative

Molecules and Light:

This activity will help to investigate how a greenhouse gas affects the climate, or why the ozone layer is important. Using this simulation, explore how light interacts with molecules in our atmosphere.

Areas to explore:

  • How light interacts with molecules in our atmosphere.
  • Identify that absorption of light depends on the molecule and the type of light.
  • Relate the energy of the light to the resulting motion.
  • Identify that energy increases from microwave to ultraviolet.
  • Predict the motion of a molecule based on the type of light it absorbs.
  • Identify how the structure of a molecule affects how it interacts with light.

Type: Virtual Manipulative

Beer's Law Lab:

This activity will allow you to make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer.
You can explore concepts in many ways including:

  • Describe the relationships between volume and amount of solute to solution concentration.
  • Explain qualitatively the relationship between solution color and concentration.
  • Predict and explain how solution concentration will change for adding or removing: water, solute, and/or solution.
  • Calculate the concentration of solutions in units of molarity (mol/L).
  • Design a procedure for creating a solution of a given concentration.
  • Identify when a solution is saturated and predict how concentration will change for adding or removing: water, solute, and/or solution.
  • Describe the relationship between the solution concentration and the intensity of light that is absorbed/transmitted.
  • Describe the relationship between absorbance, molar absorptivity, path length, and concentration in Beer's Law.
  • Predict how the intensity of light absorbed/transmitted will change with changes in solution type, solution concentration, container width, or light source and explain why?

Type: Virtual Manipulative

Understanding Polarity:

Understanding molecular polarity by changing the electron-negativity of atoms in a molecule to see how it affects polarity. See how the molecule behaves in an electric field. Change the bond angle to see how shape affects polarity. See how it works for real molecules in 3D.

Some learning goals:
•predict bond polarity using electron-negativity values
•indicate polarity with a polar arrow or partial charges
•rank bonds in order of polarity
•predict molecular polarity using bond polarity and molecular shape

Type: Virtual Manipulative

Gas Properties:


Students will pump gas molecules to a box and see what happens as they change the volume, add or remove heat, change gravity, and more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

  • Students can predict how changing a variable among pressure, volume, temperature and number influences other gas properties.
  • Students can predict how changing temperature will affect the speed of molecules.
  • Students can rank the speed of molecules in thermal equilibrium based on the relative masses of molecules.

Type: Virtual Manipulative

Under Pressure:

Explore pressure under and above water. See how pressure changes as one change fluids, gravity, container shapes, and volume.
With this simulation you can:

  • Investigate how pressure changes in air and water.
  • Discover how to change pressure.
  • Predict pressure in a variety of situations.

Type: Virtual Manipulative

Ramp: Forces and Motion:

This simulation allows you to explore forces and motion as you push household objects up and down a ramp. Observe how the angle of inclination affects the parallel forces. Graphical representation of forces, energy and work makes it easier to understand the concept.

Some of the learning goals can be:

  • Predict, qualitatively, how an external force will affect the speed and direction of an object's motion.
  • Explain the effects with the help of a free body diagram
  • Use free body diagrams to draw position, velocity, acceleration and force graphs and vice versa.
  • Explain how the graphs relate to one another.
  • Given a scenario or a graph, sketch all four graphs.

Type: Virtual Manipulative

Data Flyer:

Using this virtual manipulative, students are able to graph a function and a set of ordered pairs on the same coordinate plane. The constants, coefficients, and exponents can be adjusted using slider bars, so the student can explore the affect on the graph as the function parameters are changed. Students can also examine the deviation of the data from the function. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Function Flyer:

In this online tool, students input a function to create a graph where the constants, coefficients, and exponents can be adjusted by slider bars. This tool allows students to explore graphs of functions and how adjusting the numbers in the function affect the graph. Using tabs at the top of the page you can also access supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

Type: Virtual Manipulative

Sound:

The students will see and hear the effects of changing the frequency and/or amplitude of a sound wave. This animation may also be used to demonstrate the Doppler effect, reflection and interference of sound waves.

Type: Virtual Manipulative

Motion in 2D:

The students will drag a red point across the screen in any direction they please and, in the process, will be able to see the forces that are being put on that point at any given moment.

Type: Virtual Manipulative

pH Scale:

Students can test the pH of several substances and visualize hydronium, hydroxide, and water molecules in solution by concentration or the number of molecules. Students can add water to a given substance to see the effects it will have on the pH of that substance; or they can create their own custom substance.

Type: Virtual Manipulative

Maze Game:

The students will try to move a red ball into a blue goal without touching the walls. They will have fun competing amongst themselves to get the best time but at the same time they will also be learning about vectors, velocity, and acceleration.

Type: Virtual Manipulative

Projectile Motion:

This simulation demonstrates the physics of projectile motion. The user can fire different objects through a cannon, set its speed, angle and mass and observe the resultant motion.

Type: Virtual Manipulative

Curve Fitting:

With a mouse, students will drag data points (with their error bars) and watch the best-fit polynomial curve form instantly. Students can choose the type of fit: linear, quadratic, cubic, or quartic. Best fit or adjustable fit can be displayed.

Type: Virtual Manipulative

Equation Grapher:

This interactive simulation investigates graphing linear and quadratic equations. Users are given the ability to define and change the coefficients and constants in order to observe resulting changes in the graph(s).

Type: Virtual Manipulative

States of Matter:

Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time.

Type: Virtual Manipulative

DNA Extraction Virtual Lab:

In this interactive Biotechniques virtual lab, you will isolate DNA from a human test subject and learn the uses for DNA obtained through extraction. The "Try It Yourself" section below the virtual lab gives instruction and background information about how to extract DNA from living tissue using basic materials available in grocery stores.

Type: Virtual Manipulative

Molecular Expressions: Introduction to microscopy:

This site provides an introduction to microscopy and microscopes including history, images, and interactives.

Type: Virtual Manipulative

Norn Genetics:

This is a simplified, interactive demonstration of genetic principles. Using a fictional species named the Norn, students can predict the outcome of genetic crosses (mono and di-hybrid, sex-linked, and multiple-allele). This could be used to strengthen the students understanding of genetics, practice Punnet squares, or practice calculation of genotypic/phenotypic ratios. However, it is unlikely to be useful as an independent assignment (if used as designed).

Type: Virtual Manipulative

Membrane Channel Simulations:

This interactive cell membrane simulation allows students to see how different types of channels allow particles to move through the membrane.

Sample learning goals:

  • Predict when particles will move through the membrane and when they will not.
  • Identify which particle type will diffuse depending on which type of channels are present.
  • Predict the rate of diffusion based on the number and type of channels present.

Type: Virtual Manipulative

Parent Resources

Vetted resources caregivers can use to help students learn the concepts and skills in this course.
Integrate Standards for Mathematical Practice (MP) as applicable.
  • MAFS.K12.MP.1.1 Make sense of problems and persevere in solving them.
  • MAFS.K12.MP.2.1 Reason abstractly and quantitatively.
  • MAFS.K12.MP.3.1 Construct viable arguments and critique the reasoning of others.
  • MAFS.K12.MP.4.1 Model with mathematics.
  • MAFS.K12.MP.5.1 Use appropriate tools strategically.
  • MAFS.K12.MP.6.1 Attend to precision.
  • MAFS.K12.MP.7.1 Look for and make use of structure.
  • MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.