Standard 3 : Construct viable arguments and critique the reasoning of others. (Archived)



This document was generated on CPALMS - www.cpalms.org



General Information

Number: MAFS.K12.MP.3
Title: Construct viable arguments and critique the reasoning of others.
Type: Cluster
Subject: Mathematics - Archived
Grade: K12
Domain-Subdomain: Mathematical Practice

Related Standards

This cluster includes the following benchmarks
Code Description
MAFS.K12.MP.3.1:

Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.



Related Resources

Vetted resources educators can use to teach the concepts and skills in this topic.

Perspectives Video: Expert

Name Description
Birdsong Series: STEM Team Collaboration :

Researchers Frank Johnson, Richard Bertram, Wei Wu, and Rick Hyson explore the necessity of scientific and mathematical collaboration in modern neuroscience, as it relates to their NSF research on birdsong.